

Wearable sensors for mobility statistics

Pilleriine Kamenjuk MSc Anto Aasa PhD

Mobility Lab of University of Tartu

Migration and mobility are both the great potential and challenge of the 21st century!

- Mobility as a phenomenon has changed.
- Understand the context and causality.
- Different and new data sources.

Wearable technology and sensors

- Wearable technology "refers to accessories and clothing incorporating computer and advanced electronic technologies" (PwC 2016).
- Examples: smart glasses, fitness band, smart clothing, smart watch, smartphone, etc.
- Use cases: health & sports, public safety, entertainment, remote control, science, etc.
- "Keeping the wearable commitment" (PwC 2016) adoption, users' needs, convenience.
 - Physical and functional attributes (Park et al. 2014).

Mobile phone as a wearable sensor

- Multi-functional
- Non-invasive (?)
 - Other phone data: information as a by product of ICT services (CDR, signaling, Bluetooth, app use data)
- Wireless, etc.
- Individual → Community
- Wide, increasing use
 - Sample, spatial and temporal resolution, long term → statistics
- Use cases: mobility patterns, behavioural studies, social media use, etc.

Focus of Mobility Lab on using mobile (sensor) data

- CDR data
- Data from mobile application (Mobility Log)

- Population statistics
 - Census
 - Migration
 - Commuting
- Central places & catchment areas
- Tourism statistics
 - Local
 - Inbound
 - Outbound
- Spatial segregation
- Accessibility
- Transport demand

Memory files of mobile operators

- Call detail records (CDR) location and time of call and number of respondent (user id, location, time).
- Passive mobile positioning.

Spatial resolution of CDR

Mobile Census

Voronoi diagram of antennas

59.5°N -

Regular movement according to the mobile positioning data

Routing, OD-matrix

Central places & hinterlands

UNIVERSITY OF TARTU

(commuting)

Migration

Movement
during
Christmas
Eve

Estonians abroad

Ethnic differences in leisure-related spatial mobility

Silm, S., & Ahas, R. (2014). Ethnic differences in activity spaces: A study of out-of-home nonemployment activities with mobile phone data. Annals of the Association of American Geographers, 104(3), 542-559.

Ethnic differences in holidays

Mooses, V., Silm, S., & Ahas, R. (2016). **Ethnic segregation during public and national holidays: A study using mobile phone data**. Geografiska Annaler: Series B, Human Geography, 98(3), 205-219.

Latvian fishermen on lake Peipsi

Social networks

Communication between places

Diurnal rhythm

Chronotypes

GPS

Social network

Boring life...

GPS:Time budget

Infotechnological Mobility Observatory

- The aim of IMO is to develop a data infrastructure that supports mobility studies.
- **Integrate** different data:
 - data obtained from mobile phones and other IT tools,
 - country-specific e-data (censuses, registers, databases, etc.),
 - contextual data and descriptions

 (environmental information, land use
 functions, etc.).

Thank you!

pilleriine.kamenjuk@ut.ee

anto.aasa@ut.ee

Used materials

PwC (2016) The Wearable Life 2.0. Connected living in a wearable world. Consumer Intelligence Series.

Park, S., Chung, K., Jayaraman, S. (2014) Wearables: Fundamentals, Advancements, and a Roadmap for the Future. Wearable Sensors: Fundamentals, Implementation and Applications, Pages 1–23.